ERRATA

THERMAL RADIATION HEAT TRANSFER

JOHN R. HOWELL. M. PINAR MENGÜÇ, KYLE DAUN, AND ROBERT SIEGEL
 CRC-TAYLOR AND FRANCIS $7^{\text {TH }}$ EDITION (First printing), 2021

NOTE: The recent update to the International System of Units has changed some values for constants used in Example Problems and Homework. These are updated in the Errata to use the latest SI values. The recently updated SI constant values are noted at the end of this Errata listing.

Also, homework requiring use of an Al interface has been added to the on-line Appendix for the book at https://www.thermalradiation.net/ at the end of the Additional Homework in Section P.

Page Correction

In Examples 1.1 and 1.2, the revised value of C_{1} (see page 890, below) changes the results slightly.In Example 1.1, the first equation results in 2747
$\mathrm{W} /\left(\mathrm{m}^{2 \cdot} \mu \mathrm{~m} \cdot \mathrm{sr}\right)$, and the final result is 8629 rather than $8627 \mathrm{~W} /\left(\mathrm{m}^{2 \cdot} \mu \mathrm{~m}\right)$. In Example 1.2, replace the result of 0.256×10^{8} with 0.259×10^{8}.

At end of paragraph preceding Eq. (1.29), replace the parenthetical expression with: (assuming n is independent of wavelength):
*Eq. (1.30) should read: $\lambda_{\max } T=C_{3}=2897.7720 \mu \mathrm{~m} \cdot \mathrm{~K}$
*Eq. (1.31), replace the value of C_{4} with 4.09568×10^{-12} and in the line below, with 4.09568×10^{-12}
*In Eq. (1.34) replace the value of σ with $5.670374419 \times 10^{-8}\left(\mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right)$. (This affects the value of σ shown in some later examples, but does not affect the
results since usually rounded to at most 6 sig figs)

In Eqs. (1.39) and (1.40), make the dummy variable explicit by using the forms:

$$
\begin{align*}
& F_{0 \rightarrow \lambda T}=\frac{2 \pi C_{1}}{\sigma T^{4}} \int_{0}^{\lambda} \frac{d \lambda}{\lambda^{5}\left(\frac{C_{2}}{e^{\lambda T}}-1\right)}=\frac{2 \pi C_{1}}{\sigma C_{2}^{4}} \int_{\zeta}^{\infty} \frac{\zeta^{* 3}}{e^{\zeta^{*}}-1} d \zeta^{*} \tag{1.39}\\
& F_{0 \rightarrow \lambda T}=1-\frac{15}{\pi^{4}} \int_{0}^{\zeta} \frac{\zeta^{* 3}}{e^{\zeta^{*}}-1} d \zeta^{*} \tag{1.40}
\end{align*}
$$

Example 1.9: The result for the 2500 K blackbody should be 48.3%.
In Example 1.10, the rounded result should be 0.0809 .
For clarity, reword the paragraph starting with "We start the analysis..." with:
We start the analysis with the radiative intensity $I_{\lambda}(\theta, \phi)$ leaving surface element $d A$ as in Figure 1.18a.. The projected area is formed by taking the area that the energy is leaving and projecting it normal to the direction of the radiation, $d A \cos \theta$.

To analyze the radiative exchange between two finite surfaces, we need to carry out integration over the entire area of each surface. For this, consider radiative energy leaving a small area element $d A_{1}$ and traveling in a nonparticipating medium as in Figure 1.18b. Assume that this energy is incident on a second small area element $d A_{2}$ on finite area A_{2}, at distance S_{12} from $d A_{1}$. The projected areas are formed by taking the area that the energy is passing through and projecting it normal to the direction of the radiation; therefore, $d A_{1} \cos \theta_{1}$ and $d A_{2} \cos \theta_{2}$ are the normal components of the infinitesimal areas along direction S_{12}. The elemental solid angle is centered about the direction of the radiant path and has its origin at $d A$. Using the definition of spectral intensity $I_{\lambda, 1}$ as the rate of energy passing through $d A_{l}$ per unit projected area per unit solid angle and per unit wavelength interval, the energy $d Q_{\lambda, 1}$ from $d A$ passing through $d A_{I}$ in the direction of S_{12} is

Eq. (1.85): The upper limit of the integral should be λ, not ∞.
In Problem 1.11, the answer should be 0.809 h
Replace the existing photo of Johann Heinrich Lambert with this photo:

58-60 Figure 2.2 should be contiguous, and not split between separated pages. On page 58, Figure 2.2 caption, add "(Continued on Page 60)." On Page 60, in Figure 2.2, begin caption with "FIGURE 2.2 (Continued from Page 58): Pictorial descriptions....."

62-63 In Figure 2.4, change the cosine function to $0.850 \cos (\theta)$. Use this function in the solution of Example 2.3, and round the result to 3 significant figures to give a final result of $32,200 \mathrm{~W} / \mathrm{m}^{2}$.

64 The first equation on the page is missing minus signs, and should read:

$$
\varepsilon\left(T_{A}\right)=0.1 F_{0 \rightarrow 2000}+0.4\left(F_{0 \rightarrow 6000}-F_{0 \rightarrow 2000}\right)+0.2\left(1-F_{0 \rightarrow 6000}\right)=0.3275
$$

In Example 2.5 the first equation should read:

$$
\varepsilon(650 \mathrm{~K})=0.90 \mathrm{~F}_{0 \rightarrow 2275}+\frac{1}{\sigma 650^{4}} \int_{3.5}^{9.5}(1.27917-0.10833 \lambda) \frac{2 \pi \mathrm{C}_{1}}{\lambda^{5}\left(\mathrm{e}^{\mathrm{C}_{2} / 650 \lambda}-1\right)} d \lambda+0.25\left(1-\mathrm{F}_{0 \rightarrow 6175}\right)
$$ Figure 2.7: Interchange $\mathrm{d} \Omega_{\mathrm{i}}$ and $\mathrm{d} \Omega$ in parts (a) and (b).

Figure caption should now read:
FIGURE 2.7: Equivalent ways of showing energy from dA_{i} that is incident on $d A$. (a) Incidence within solid angle $\mathrm{d} \Omega$ having origin at dA_{i}; incidence within solid angle $\mathrm{d} \Omega_{\mathrm{i}}$ having origin at dA .
In the first equation in Example 2.7, all upper limits in the integrals should be ∞, not N (3 places). Also, due to the revised constants*, the final answer should read:

$$
\alpha=0.7015
$$

In Eq. (2.48), delete the double apstrophes on both sides.

91

93

110-112 Example 3.4: On page 111, replace the equation with:

$$
\alpha_{n}(T=250 \mathrm{~K})=\frac{\varepsilon_{n}(T=500 \mathrm{~K})}{\sqrt{2}}=\frac{\sqrt{1 / 2} \int_{0}^{\infty} \varepsilon_{\lambda, n}(T=500 \mathrm{~K}) I_{\lambda, b}(500 \mathrm{~K}) d \lambda}{\int_{0}^{\infty} I_{\lambda, b}(500 \mathrm{~K}) d \lambda}
$$

On page 112, replace the equation with

$$
\begin{aligned}
\varepsilon_{n}(T=500 \mathrm{~K}) & =0.0348 T \sqrt{r_{e, 273}}=0.0348 T \sqrt{r_{e, 273}} \sqrt{\frac{273}{298}} T \\
& =0.0348 \sqrt{10 \times 10^{-6}} \sqrt{\frac{273}{298}} \times 500=0.053
\end{aligned}
$$

Delete the figure at the top of the page. It is not part of the homework.
In Homework Problem 2.5, the answer to part (a) should be 0.764 .
In Homework Problem 2.10, the answer should be 30.4 min .
Example 3.1: Answer for perpendicular compnent should be 0.299 , and reflectivity for unpolarized incident intensity should be 0.251 .

Example 3.3: The reference to the figure should be to Fig. 3.3b, not 3.2b.
Table 3.2. in the values for Normal Spectral Reflectivity for Aluminum, from Eq. (3.29), the values should be 0.916 and 0.979 instead of 0.883 and 0.970 .

Equation above the Table: Replace $q_{\text {sol }}$ with $G_{\text {sol }}$.
In Eq. (3.46), replace $q_{\text {sol }}$ with $G_{\text {sol }}$.
In Example 3.6, replace "... in Figure 3.46..." with "... in Figure 3.50..."
Also, the upper limits in the two integrals should be ∞ and not the symbol $¥$, as should the upper limits in two of the blackbody fractions in the two integral equations.

In first line, replace $15 \mu \mathrm{~m}$ with $1.5 \mu \mathrm{~m}$
Example 3.7: The upper limits in the two integrals should be ∞. The result of the first equation should be $1150 \mathrm{~W} / \mathrm{m}^{2}$. The result of the second equation should be $68.3 \mathrm{~W} / \mathrm{m}^{2}$. The final result should be $1150-68=1082 \mathrm{~W} / \mathrm{m}^{2}$.

In HW Problem 3.1, the answers should be 0.9797 and 0.9405
In HW Problem 3.5, first line shouuld be "Show using Equation (3.8) that....."

In HW Problem 3.6, the Answers should be: $645 \mathrm{~K} ; 0.0329$; 1.28
HW Problem 3.8 should read:
3.8 Using Equation (3.25) with data for n and k from Table 3.2, find the hemispherical emissivity of aluminum and titanium at 298 K at 0.484 and 8.06 $\mu \mathrm{m}$.

$$
\begin{aligned}
& \text { Answer: } \varepsilon_{\lambda, A l}(\lambda=0.484 \mu \mathrm{~m})=\underline{0.086} ; \varepsilon_{\lambda, \mathrm{Al}}(\lambda=8.06 \mu \mathrm{~m})=0.014 ; \\
& \varepsilon_{\lambda, \mathrm{Ti}}(\lambda=0.484 \mu \mathrm{~m})=\underline{0.678} ; \varepsilon_{\lambda, \mathrm{Ti}}(\lambda=8.06 \mu \mathrm{~m})=\underline{0.043} .
\end{aligned}
$$

In HW 3.9, add "...when exposed to the sun." to the problem statement.

In HW 3.10, answers should be -8.1 and $65.4^{\circ} \mathrm{C}$.
In HW 3.12, the second answer should be 1819 W .
In Example 4.5, second paragraph, Equation (4.5) should be Equation (4.12).
Example 4.13: First equation should read:

$$
A_{1} F_{1-2}+A_{1} F_{1-3}=A_{1} ; \quad A_{2} F_{2-1}+A_{2} F_{2-3}=A_{2} ; \quad A_{3} F_{3-1}+A_{3} F_{3-2}=A_{3}
$$

Problem 4.4: The answer to Part b) should be 0.02744
In the list above Section 5,2, item 1, replace "All"" with "The"
In next to last paragraph, second sentence, rewrite to: The result is $T_{1}=721.6 \mathrm{~K}$ ($T_{2}=667.4 \mathrm{~K}, Q_{3}=53.01 \mathrm{~W}$).

In HW 5,2, answer should be 64.2 W.
Replace the equation and following text with:

$$
t=\frac{\rho_{M} V C\left(1 / \varepsilon_{1}+1 / \varepsilon_{2}-1\right)}{A_{1} \sigma}\left[\frac{1}{4 T_{2}^{3}} \ln \left|\frac{\left(T_{F}+T_{2}\right) /\left(T_{F}-T_{2}\right)}{\left(T_{1}+T_{2}\right) /\left(T_{1}-T_{2}\right)}\right|+\frac{1}{2 T_{2}^{3}}\left(\tan ^{-1} \frac{T_{F}}{T_{2}}-\tan ^{-1} \frac{T_{1}}{T_{2}}\right)\right]
$$

Substituting $\rho_{M}=975 \mathrm{~kg} / \mathrm{m}^{3}, \quad V=\frac{1}{6} \pi(0.15)^{3} \mathrm{~m}^{3}, c=4195 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K}), \varepsilon_{1}=\varepsilon_{2}=0.020$,
$A_{1}=\pi \cdot(0.15)^{2} \mathrm{~m}^{2}, \sigma=5.6704 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right), T_{2}=294 \mathrm{~K}, T_{1}=368 \mathrm{~K}$, and $T_{F}=$ 322 K gives $t=375 \mathrm{~h}$ to cool if energy losses were only by radiation. Conduction losses through the bottle neck and free molecular transfer by the low-density gas between the cylinders usually cause the cooling to be faster.
In Eq. (8.9), replace parentheses with: (Ampère's Law)
Replace the units on Electrical Conductivity with: $(\Omega \cdot m)^{-1} ; C^{2} / N \cdot m^{2} \cdot s ; S / m$ Eq. (8.82) should read:

$$
\begin{aligned}
\rho\left(\theta_{\mathrm{i}}\right)=\frac{\rho_{\perp}\left(\theta_{\mathrm{i}}\right)+\rho_{\| \mid}\left(\theta_{\mathrm{i}}\right)}{2} & =\frac{1}{2}\left[\frac{\tan ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}{\tan ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}+\frac{\sin ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}{\sin ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}\right] \\
& =\frac{1}{2} \frac{\sin ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}{\sin ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}\left[1+\frac{\cos ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}{\cos ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}\right]
\end{aligned}
$$

Eq. (8.111) should read:

$$
\epsilon_{\mathrm{II}}=\operatorname{Im}\left(\chi_{\mathrm{e}}\right)=\frac{\omega_{\mathrm{p}}^{2} \zeta \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\zeta^{2} \omega^{2}}
$$

Eq. (8.118): The zeta (ζ) should be tau (τ).
Replace the photo of Maurice Paul Auguste Charles Fabry with this one:

Two lines above Eq. (9.1) replace the equation numbers with (Equations (3.1) and (3.2)).

In Fig. 9.4, revise the caption to: absorption bands of CO_{2} gas at $830 \mathrm{~K}, \ldots$
Figure 9.11 In units on vertical axis, replace mol with kmol .
Example 9.1 The first line of the second paragraph should read:
Relations from the exponential wide-band model for α, β, and ω, and the transition $(-1,0,1)$ are used. (See the footnote for the $9.4 \mu \mathrm{~m}$ band in Table 9.2).
First line of text: \quad Replace $\pm \infty$ with ± 1.
Section 14.2.2 \quad Replace all β^{k} with \hat{u}^{k}
In Figure 14.11, in the trapezoid for $\mathrm{R}_{\Omega}>\Omega$?, switch the "yes" and "no" labels on the output arrows. In the bottom trapezoid, replace " $\mu>1$?" with " $\mu>0$?".

Replace Figure 14.12 with the figure below:

686

888*
Line after Eq. (15.5): replace $\vartheta(0)=0$ with $\vartheta(0)=1$.
The speed of light, c_{o}, should read $\mathrm{c}_{\mathrm{o}}=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
The reduced Planck's constant should read $\hbar=h / 2 \pi=1.054571817 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
The value for the Boltzmann constant should read $\mathrm{k}=1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
The value for the Classical electron radius should read:

$$
2.8179403262(+/-13) \times 10^{-15} \mathrm{~m}
$$

The value for the electron volt should read:

$$
1 \mathrm{eV}=1.602176634 \times 10^{-19} \mathrm{~J}
$$

890* The value of the radiation constant C_{1} in SI should read

$$
\begin{aligned}
& \mathrm{C}_{1}=0.59552149 \times 10^{8} \mathrm{~W} \cdot \mu \mathrm{~m}^{4} /\left(\mathrm{m}^{2} \cdot \mathrm{sr}\right) \\
& \mathrm{C}_{1}=0.59552149 \times 10^{-16} \mathrm{~W} \cdot \mathrm{~m}^{2} / \mathrm{sr}
\end{aligned}
$$

The value of the radiation constant C_{3} in SI should read

$$
\begin{aligned}
& \mathrm{C}_{3}=2,897.7720 \mu \mathrm{~m} \cdot \mathrm{~K}(\text { note unit change from } \mathrm{m} \text { to } \mu \mathrm{m}) \\
& \mathrm{C}_{3}=0.0028977720 \mathrm{~m} \cdot \mathrm{~K}
\end{aligned}
$$

The value of the Stefan-Boltzmann constant should read

$$
5.670374419 \times 10^{-8}\left(\mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right)
$$

Source: Should read Tiesinga et al., 2021.
*Most of these changes result from the recent fundamental revision in the International System of Units. See Appendix R in the on-line Appendices at:
http://www.thermalradiation.net/appendix.html
or the video at
http://www.thermalradiation.net/videos.html

